Inhibitory transmission

Research center

45 rue d’Ulm
75230 Paris
Marc Mézard


Ecole Normale Supérieure
Université Pierre et Marie Curie


Institut de Biologie de l'ENS IBENS
U1024 - UMR8197
Labex Memolife, IDEX PSL*, NIH Brain Initiative Grant


Vesicular loading
Multiphoton imaging
Inhibitory transmission



Zampini V, Liu JK, Diana MA, Maldonado PP, Brunel N, Dieudonné S. (2016) Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit. Elife. 2016 Sep 19;5. pii: e15872. doi: 10.7554/eLife.15872.

Akemann W, Léger JF, Ventalon C, Mathieu B, Dieudonné S, Bourdieu L. (2015) Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy. Opt Express. 23: 28191-205.

Giber K, Diana MA*, M Plattner V*, Dugué GP, Bokor H, Rousseau CV, Maglóczky Z, Havas L, Hangya B, Wildner H, Zeilhofer HU, Dieudonné S§, Acsády L. (2015) A subcortical inhibitory signal for behavioral arrest in the thalamus. Nat Neurosci. 18:562-8.

Ankri L, Husson Z*, Pietrajtis K, Proville R, Léna C, Yarom Y, Dieudonné S§, Yoe Uusisaari M. (2015) A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. Elife. 4. doi: 10.7554/eLife.06262.

Otsu Y, Marcaggi P, Feltz A, Isope P, Kollo M, Nusser Z, Mathieu B, Kano M, Tsujita M, Sakimura K, Dieudonné S§. (2014) Activity-dependent gating of calcium spikes by A-type K+ channels controls climbing fiber signaling in Purkinje cell dendrites. Neuron. 84 : 137-51.

Fields of research

Neurophysiology / systems neuroscience

Research Theme

The aim of the group is to understand how inhibitory neurons control the gain and shape the temporal output of neuronal assemblies. To this end we combine electrophysiological recordings, optical recordings and the latest optogenetic tools. More specifically, we study the function of inhibitory neurons in the cerebellum and in thalamic-projecting pathways at the single-cell and network levels. Fast multipoint multiphoton imaging of calcium influx in the Purkinje cell, a giant inhibitory neuron. In the vertebrate hindbrain, inhibitory synaptic transmission is mediated by the neurotransmitters glycine and GABA, which can be released by separate neurons or co-released by mixed inhibitory neurons.

We have shown that postsynaptic cells are able to select the neurotransmitter they use by expressing the appropriate GABAA or glycine receptors at the synapse. We are now exploring how this mechanism may be used during the homeostatic regulation of inhibition.

Team members