Brain Development and Plasticity


Research center

45 rue d’Ulm
75230 Paris
Marc Mézard


Ecole Normale Supérieure
ED 515 Complexité du Vivant
Université Pierre et Marie Curie


Institut de Biologie de l'ENS IBENS
Phone: 01 44 32 35 47
U1024 - UMR8197
Memolife, PSL


Développement cérébral
inflammation prénatale
génétique de la souris
migration et guidage axonal


de Frutos CA, Bouvier G, Arai Y, Thion MS, Lokmane L, Keita M, Garcia-Dominguez M, Charnay P, Hirata T, Riethmacher D, Grove EA, Tissir F, Casado M, Pierani A, Garel S. Reallocation of Olfactory Cajal-Retzius Cells Shapes Neocortex Architecture. Neuron. 2016 Oct 19;92(2):435-448. doi: 10.1016/j.neuron.2016.09.020. 

Lokmane L, Garel S. Map transfer from the thalamus to the neocortex: inputs from the barrel field. Semin Cell Dev Biol. 2014 Nov;35:147-55. doi: 10.1016/j.semcdb.2014.07.005. Epub 2014 Jul 11.

Deck M, Lokmane L, Chauvet S, Mailhes C, Keita M, Niquille M, Yoshida M, Yoshida Y, Lebrand C, Mann F, Grove EA, Garel S. Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron. 2013 Feb 6;77(3):472-84. doi: 10.1016/j.neuron.2012.11.031.

Lopez-Bendito*, G., Cautinat*, A., Sanchez, J.A., Bielle, F., Flames, N., Garrat, A.N., Talmage, D., Role, L.W., Charnay, P., Marin*, O. & Garel*, S. Tangential neuronal migration controls axon guidance : a role for neuregulin-1 in thalamocortical axon navigation. (2006) Cell, 125(1):127-42.

Storm*, E.E., Garel*, S., Borello*, U., Hebert, J.M., Martinez, S., McConnell, S.K., Martin, G.R. & Rubenstein, J.L.R. (2006) Dosage dependent functions of Fgf8 in regulating telencephalic patterning centers. (2006) Development, 133, 1831-44.

Garel, S. & Rubenstein, J.L.R., (2005). Patterning of the cerebral cortex. Cognitive Neuroscience III, (Gazzaniga MS, ed). Cambridge: MA, MIT Press.

Huffman, K.J., Garel, S. & Rubenstein, J.L.R., (2004). Fgf8 regulates the development of intra-neocortical projections. J. Neurosci., 24, 8917-8923.

Garel, S. & Rubenstein, J.L.R., (2004). Intermediate targets in the formation of topographic projections: inputs from the thalamocortical system. Trends Neurosci., 27, 533-39.

Fields of research

Neurogenetics / neurodevelopment

Research Theme

The long-term goal of our laboratory is to understand how the anterior part of the mammalian brain, the telencephalon, is shaped and wired during development. The telencephalon, comprising the cerebral cortex and basal ganglia, plays essential roles such as motor control, sensory perception, and cognitive functions. Its complex neuronal networks are assembled during embryogenesis and remodeled during early postnatal life. During this process, both cell migration and axon guidance play essential roles by controlling the accurate positioning of neuronal subtypes and the formation of specific connections, respectively. Whereas conserved sets of factors have been shown to control cell migration and axon guidance, there is still much to learn about how these two fundamental processes are controlled and coordinated to ensure the morphogenesis of neural circuits in vivo.

By combining mouse molecular genetics, ex-vivo manipulations and advanced imaging techniques, we investigate how cell migration and axon pathfinding are controlled and coordinated to ensure the morphogenesis of neural networks in the developing telencephalon. As developmental abnormalities participate in the etiology of several neuropsychiatric disorders, understanding how the telencephalon wires is essential not only to gain insights into its normal functioning, but also to advance our comprehension of neuropsychiatric disorders. 

ENP Students


Team members

DECK Marie
KEITA Maryama
LOKMANE Ludmilla
OLLER Guilaume